【篇一】
鸟头定理即共角定理。
燕尾定理即共边定理的一种。
共角定理:
若两三角形有一组对应角相等或互补,则它们的面积比等于对应角两边乘积的比。
共边定理:
有一条公共边的三角形叫做共边三角形。
共边定理:设直线AB与PQ交与M则S△PAB/S△QAB=PM/QM
这几个定理大都利用了相似图形的方法,但小学阶段没有学过相似图形,而小学奥数中,常常要引入这些,实在有点难为孩子。
为了避开相似,我们用相应的底,高的比来推出三角形面积的比。
例如燕尾定理,一个三角形ABC中,D是BC上三等分点,靠近B点。连接AD,E是AD上一点,连接EB和EC,就能得到四个三角形。
很显然,三角形ABD和ACD面积之比是1:2
因为共边,所以两个对应高之比是1:2
而四个小三角形也会存在类似关系
三角形ABE和三角形ACE的面积比是1:2
三角形BED和三角形CED的面积比也是1:2
所以三角形ABE和三角形ACE的面积比等于三角形BED和三角形CED的面积比,这就是传说中的燕尾定理。
以上是根据共边后,高之比等于三角形面积之比证明所得。
必须要强记,只要理解,到时候如何变形,你都能会做。至于鸟头定理,也不要死记硬背,掌握原理,用起来就会得心应手。
【篇二】
一个长方体,前面和上面的面积和是209平方厘米,这个长方体的长、宽、高以厘米为单位的数都是质数。这个长方体的体积和表面积各是多少?
【思路导航】
长方体的前面与上面的面积和是长×宽+宽×高=长×(高+宽),由于长方体的长、宽、高用厘米为单位的数都是质数,所以有209=11×19=11×(17+2),即长、宽、高分别为11、17、2厘米。知道了长、宽、高求体积和表面积就容易了。
209=11×19=11×(17+2)
11×17×2=374(立方厘米)
(11×17+11×2+17×2)×2=486(平方厘米)
练习(1)一个长方体,它的前面和上面的面积和是110平方厘米,且长、宽、高都是质数,那么这个长方体的体积是多少?
练习(2)一个长方体的长、宽、高是三个连续偶数,体积是960立方厘米,求它的表面积。
练习(3)一个长方体和一个正方体的棱长和相等,已知长方体的长、宽、高分别是6分米、4分米、2分米,求正方体的体积。
【篇三】
有一个长方体木块,长125厘米,宽40厘米,高25厘米。把它锯成若干个体积相等的小正方体,然后再把这些小正方体拼成一个大正方体。这个大正体的表面积是多少平方厘米?
分析与解一般说来,要求正方体的表面积,一定要知道正方体的棱长。题中已知长方体的长、宽、高,同正方体的棱长又没有直接联系,这样就给解答带来了困难。我们应该从整体出发去思考这个问题。
按题意,这个长方体木块锯成若干个体积相等的小正方体后,又拼成一个大正方体。这个大正方体的体积和原来长方体的体积是相等的。已知长方体的长、宽、高,就可以求出长方体的体积,这就是拼成的大正方体的体积。进而可以求出正方体的棱长,从而可以求出正方体的表面积了。
长方体的体积是
125×40×25=125000(立方厘米)
将125000分解质因数:
125000=2×2×2×5×5×5×5×5×5
=(2×5×5)×(2×5×5)×(2×5×5)
可见大正方体的棱长是
2×5×5=50(厘米)
大正方体的表面积是
50×50×6=15000(平方厘米)
答:这个大正方体的表面积是15000平方厘米。