1.小学奥数几何练习题
长方体的前面与上面的面积和是长×宽+宽×高=长×(高+宽),由于长方体的长、宽、高用厘米为单位的数都是质数,所以有209=11×19=11×(17+2),即长、宽、高分别为11、17、2厘米。知道了长、宽、高求体积和表面积就容易了。209=11×19=11×(17+2)
11×17×2=374(立方厘米)
(11×17+11×2+17×2)×2=486(平方厘米)
(1)一个长方体,它的前面和上面的面积和是110平方厘米,且长、宽、高都是质数,那么这个长方体的体积是多少。
(2)一个长方体的长、宽、高是三个连续偶数,体积是960立方厘米,求它的表面积。
(3)一个长方体和一个正方体的棱长和相等,已知长方体的长、宽、高分别是6分米、4分米、2分米,求正方体的体积。
2.小学奥数几何练习题
1、有两个长方形,甲长方形的长是98769厘米,宽是98765厘米;乙长方形的长是98768厘米,宽是98766厘米。这两个长方形的面积哪个大?2、有50个表面涂有红漆的正方体,它们的棱长分别是1厘米、3厘米、5厘米、7厘米、9厘米、……、99厘米,将这些正方体锯成棱长为1厘米的小正方体,得到的小正方体中,至少有一个面是红色的小正方体共有多少个?
3、有棱长为1、2、3、……、99、100、101、102厘米的正方体102个,把它们的表面都涂上红漆,晾干后把这102个正方体都分别截成1立方厘米的小正方体,在这些小正方体中,只有2个面有红漆的共有多少个?
4、有一个长方体木块,长125厘米,宽40厘米,高25厘米。把它锯成若干个体积相等的小正方体,然后再把这些小正方体拼成一个大正方体。这个大正体的表面积是多少平方厘米?
5、一个圆形钟面,圆周被平均分成了12等份。已知圆形的半径是6厘米,那么图中阴影的面积是多少平方厘米?
3.小学奥数几何练习题
有一个长方体木块,长125厘米,宽40厘米,高25厘米。把它锯成若干个体积相等的小正方体,然后再把这些小正方体拼成一个大正方体。这个大正体的表面积是多少平方厘米?分析与解一般说来,要求正方体的表面积,一定要知道正方体的棱长。题中已知长方体的长、宽、高,同正方体的棱长又没有直接联系,这样就给解答带来了困难。我们应该从整体出发去思考这个问题。
按题意,这个长方体木块锯成若干个体积相等的小正方体后,又拼成一个大正方体。这个大正方体的体积和原来长方体的体积是相等的。已知长方体的长、宽、高,就可以求出长方体的体积,这就是拼成的大正方体的体积。进而可以求出正方体的棱长,从而可以求出正方体的表面积了。
长方体的体积是
125×40×25=125000(立方厘米)
将125000分解质因数:
125000=2×2×2×5×5×5×5×5×5
=(2×5×5)×(2×5×5)×(2×5×5)
可见大正方体的棱长是
2×5×5=50(厘米)
大正方体的表面积是
50×50×6=15000(平方厘米)
答:这个大正方体的表面积是15000平方厘米。
4.小学奥数几何练习题
1、一个长方体的长、宽、高分别是11厘米、6厘米、4厘米,如果高增加3厘米,表面积增加多少平方厘米?2、一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?
3、一块长方体石料,长4分米,横截面是一个边长为0.5分米的正方形,这块石料的表面积是多少?如果每立方分米石料重2.7千克,这块石料有多重?
4、长方体的右侧面面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的体积是多少立方厘米?
5、把一个体积为460立方厘米的石块放入一个长方体容器中,完全进入水中后,水面由148厘米上升到150厘米,这个容器的底面积是多少?
5.小学奥数几何练习题
1、一种长方体积木,长3厘米,宽2.5厘米,高2厘米。将两块这样的长方体拼成一个新的长方体,表面积最小是多少?2、一个长方体油箱,底面是一个正方形,边长是6分米,里面已盛油144升,已知里面油的深度是油箱深度的一半,这个油箱深多少分米?
3、长方体,如果长减少3厘米,就是一个正方体,这个正方体的表面积是96平方厘米,原来长方体的体积是多少立方厘米?
4、给一个棱长是1.2米的正方体铁箱油漆一遍,(内外两面)油漆部分面积是多少平方米?
5、一张办公桌有3个抽屉,每个抽屉长50厘米、宽30厘米、高10厘米。做这张办公桌的抽屉至少需要木板多少平方厘米?