1.小学生奥数倍数问题练习题及答案 篇一
两根同样长的铁丝,第一根剪去18厘米,第二根剪去26厘米,余下的铁丝第一根是第二根的3倍。原来两根铁丝各长多少厘米? 分析:由于第二根比第一根多剪去26-18=8厘米,所以剩下的铁丝第一根就比第二根多(3-1)倍。因此,8÷(3-1)=4(厘米)。就是现在第二根铁丝的长度,它原来长4+26=30厘米。
2.小学生奥数倍数问题练习题及答案 篇二
甲组有图书是乙组的3倍,若乙组给甲组6本,则甲组的图书是乙组的5倍。原来甲组有图书多少本? 分析:甲组的图书是乙组的3倍,若乙组拿出6本,甲组相应的也拿出6×3=18本,则甲组仍是乙组的3倍。事实上甲组不但没有拿出18本,反而接受了乙组的6本,18+6就正好对应着后来乙组的(5-3)倍。因此,后来乙组有图书(18+6)÷(5-3)=12本,乙组原来有12+6=18本,甲组原来有18×3=54本。
3.小学生奥数倍数问题练习题及答案 篇三
幼儿园买来苹果的个数是梨的2倍。大班的同学每7人一组,每组领3个梨和4个苹果,结果梨正好分完,苹果还剩下16个。大班共有多少个同学? 分析:因为苹果是梨的2倍,每组分3个梨和3×2=6个苹果最后就一起分完。可每组分4个苹果,少分6-4=2个,所以有8组同学,全班有7×8=56人。
4.小学生奥数倍数问题练习题及答案 篇四
有两筐桔子,如果从甲筐拿出8个放进乙筐,两筐的桔子就同样多;如果从乙筐拿出13个放到甲筐,甲筐的桔子是乙筐的2倍。甲、乙两筐原来各有多少个桔子? 分析:根据“从甲筐拿出8个放进乙筐,两筐的橘子就同样多”可知,原来甲筐比乙筐多8×2=16个橘子;如果从乙筐拿出13个放到甲筐,这时,甲筐就比乙筐多16+13×2=42个。因此,乙筐里还有42÷(2-1)=42个,原来乙筐里有42+13=55个,甲筐里原来有55+16=71个。
5.小学生奥数倍数问题练习题及答案 篇五
甲粮库的存粮是乙粮库的2倍,甲粮库每天运出粮食40吨,乙粮库每天运出30吨。若干天后,乙粮库的粮全部运完,而甲粮库还有80吨。甲、乙粮库原来各有粮食多少吨? 分析:因为甲粮库的存粮是乙粮库的2倍,如果每天乙粮库运30吨,甲粮库运出30×2=60吨,两粮库的粮食就会同时运完。而实际上甲粮库每天只运出40吨,所以,每天就少运60-40=20吨。80吨里包含有4个20吨,也就是已经运了4天,因此,甲粮库原有粮食40×4+80=240吨,乙粮库原有240÷2=120吨。
6.小学生奥数倍数问题练习题及答案 篇六
养鸡场的母鸡只数是公鸡的6倍,后来公鸡和母鸡各增加60只,结果母鸡只数就是公鸡的4倍。原来养鸡场一共养了多少只鸡? 分析:养鸡场原来母鸡的只数是公鸡的6倍,如果公鸡增加60只,母鸡增加60×6=360只,那么,后来的母鸡只数还是公鸡的6倍。可实际母鸡只增加了60只,比360只少300只。因此,现在母鸡只数只有公鸡的4倍,少了2倍。所以,现在公鸡的只数是300÷2=150只,原来有公鸡150-60=90只,一共养了90×(1+6)=630只鸡。
7.小学生奥数倍数问题练习题及答案 篇七
有1800千克的货物,分装在甲、乙、丙三辆车上。已知甲车装的千克数正好是乙车的2倍,乙车比丙车多装200千克。甲、乙、丙三辆车各装货物多少千克? 分析:如果丙车多装200千克,就和乙车装的货物同样多,这样三辆车装的总重量就是1800+200=2000千克。再把2000千克平均分成4份,就得到乙车上装的货物是500千克,甲车上装500×2=1000千克,丙车上装有500-200=300千克。
8.小学生奥数分解质因数练习题及答案 篇八
把18个苹果平均分成若干份,每份大于1个,小于18个。一共有多少种不同的分法? 分析:先把18分解质因数:18=2×3×3,可以看出:18的约数是1、2、3、6、9、18,除去1和18,还有4个约数,所以,一共有4种不同的分法。
9.小学生奥数分解质因数练习题及答案 篇九
有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗。共有多少种分法? 分析:先把168分解质因数,168=2×2×2×3×7,由于每份不得少于10颗,也不能多于50颗,所以,每份有2×2×3=12颗,2×7=14颗,3×7=21颗,2×2×2×3=24颗,2×3×7=42颗,共有5种分法。
10.小学生奥数分解质因数练习题及答案 篇十
王老师带领一班同学去植树,学生恰好分成4组。如果王老师和学生每人植树一样多,那么他们一共植了539棵。这个班有多少个学生?每人植树多少棵? 分析:根据每人植树棵数×人数=539棵,把539分解质因数。539=7×7×11,如果每人植7棵,这个班就有7×11-1=76人;如果每人植树11棵,这个班共有7×7-1=48人。
11.小学生奥数分解质因数练习题及答案 篇十一
下面的算式里,□里数字各不相同,求这四个数字的和。□□×□□=1995
分析:要使两个两位数的积等于1995,那么,这两个数的积应和1995有相同的质因数。1995=3×5×7×19,可以有35×57=1995和21×95=1995。因为要满足“数字各不相同”的条件,所以取21×95=1995,这四个数字的和是:2+1+9+5=17。
12.小学生奥数分解质因数练习题及答案 篇十二
长方形的面积是375平方米,已知它的宽比长少10米,长和宽的和是多少米? 分析:这道题如果用方程来解会比较麻烦,我们可以把375分解质因数看一看。375=5×5×5×3,因为5×5比5×3正好多10,所以,此长方形的长是5×5=25米,宽是5×3=15米,它们的和是40米。
13.小学生奥数分解质因数练习题及答案 篇十三
某班同学在班主任老师带领下去种树,学生恰好平均分成三组,如果师生每人种树一样多,一共种了1073棵,那么,平均每人种了多少棵? 分析:根据每人种树棵数×参加人数=1073,把1073分解质因数:1073=29×37,再根据学生恰好平均分成三组可知:参加种树的人数是3的倍数多1,由于只有37比3的倍数多1,所以有37人,平均每人种29棵。
14.小学生奥数分解质因数练习题及答案 篇十四
小明用2.16元买了一种画片若干张,如果每张画片的价钱便宜1分钱,那么他还能多买3张。小明买了多少张画片? 分析:根据题意可知:画片的单价×张数=216分,它们乘积的质因数和216的质因数相同。我们可以先把216分解质因数,再写成两数相乘的形式分析:216=2^3×3^3=8×27=9×24,显然,216分可以买8分的画片27张,也可以买9分的画片24张。所以,小明买了24张画片,符合题意。
15.小学生奥数简单推理练习题及答案 篇十五
红红、聪聪和颖颖都戴着太阳帽去参加野炊活动,她们戴的帽子一个是红的,一个是黄的,一个蓝的。只知道红红没有戴黄帽子,聪聪既不载黄帽子,也不戴蓝帽子。请你判断红红、聪聪和颖颖分别戴的是什么颜色的帽子? 思路导航:从已知条件中可知,“聪聪既不戴黄帽子,也不载蓝帽子”是个关键条件,因为3个人戴的帽子只有红、黄、蓝三种颜色,因此排除黄、蓝两种颜色,聪聪只能戴红帽子;又根据“红红没戴黄帽子”可知红红戴蓝帽子,因此颖颖只能戴黄帽子。
16.小学生奥数简单推理练习题及答案 篇十六
王帆、李昊、吴一凡三人中,有一人看了《地球奥秘》这部科技片。当老师问他们三个谁看了这部科技片时:王帆说:“李昊看了。”
李昊说:“我没有看。”
吴一凡说:“我没有看。”
如果知道他们三人中有两人说了假话,有一人说的是真话,你能判断谁看了这部影片吗?
思路导航:我们可以这样想:假设是王帆看了这部影片,那么王帆说的是假话,李昊和吴一凡说的是真话,这样与三人中有两人说了假话、一人说了真话不符,因而王帆没看这部影片;
假设是李昊看了这部影片,那么王帆和吴一凡说了真话,李昊说了假话,这与两人说了假话、一人说了真话不符,因而李昊没看这部影片;
假设吴一凡看了这部影片,那么王帆和吴一凡说了假话,只有李昊一人说了真话,因而我们可以断定是吴一凡看了这部影片。
17.小学生奥数简单推理练习题及答案 篇十七
下图中,□和△各代表几?□+△=28
□=△+△+△
□=()
△=()
思路导航:根据□+△=28,我们可以得出□=28-△;由□=△+△+△得到28=△+△+△+△,4个△等于28,一个△等于28÷4=7;由□=△+△+△可求出□=7+7+7=21。
18.小学生奥数简单推理练习题及答案 篇十八
下图中□和△各代表几?□×△=36
□÷△=4
□=()
△=()
思路导航:根据□÷△=4可知△为一份,□是这样的4份,即□=4△;又根据□×△=36,可以得到4△×△=36,即△×△=9,进一步得到△=3,□=4△=4×3=12。
19.小学生奥数简单推理练习题及答案 篇十九
下图中,□和△各代表几?□+□+△=16
□+△+△=14
□=()
△=()
思路导航:16里面有2个□,1个△;14里面有1个□,2个△,16减去14等于2,即□-△=2,那么如果把△换成了□,则16需要加上2,即□+□+□=16+2,那么□=(16+2)÷3=6,△=16-6×2=4。
20.小学生奥数简单推理练习题及答案 篇二十
下图中,□和○各代表几?□+□+○+○+○=34
○+○+○+○+□+□+□=48
□=()
○=()
思路导航:34里面有2个□、3个○,48里面有3个□、4个○,用48减去34得到□+○=14,34中有2个(□+○)及1个○。所以,○=34-14×2=6,□=(34-6×3)÷2=8。
21.小学生奥数简单推理练习题及答案 篇二十一
下图中□、☆和△各代表几?☆+☆=□+□+□
□+□+□=△+△+△+△
☆+□+△+△=80
☆=()
□=()
△=()
思路导航:因为2个☆等于3个□,3个□又等于4个△,所以2个☆等于4个△,那么1个☆等于2个△。在☆+□+△+△=80中,2个△可以用1个☆替代,就变为☆+□+☆=80,而2个☆又可以用3个□替代,也就是□+□+□+□=80,所以□=20,☆=20×3÷2=30,△=20×3÷4=15。