一、方法原理:
对于两数相乘的算式,如果一个乘数进行较小幅度的变化,而另一个乘数反方向地变化相同的幅度,那么乘积只会产生非常小的误差,可以忽略。并且乘数变化幅度越小,计算误差越小。
当乘数的变化幅度为10%时:A(1+10%)×B(1-10%)=AB(1+10%)(1-10%)=0.99AB≈AB。如果乘数变化幅度小于10%,那么计算误差将会在1%以内。
二、方法应用:
1,当首变数的首数为4到9时:把首变数转化为整百的数。
例:619×768≈600×792=47520
解析:乘数619减掉19,19大约相当于3倍的首数6.1,那么另一个乘数应该加上3倍的首数7.6,大约是24。所以算式变成了(619-19)×(768+24)=600×792=475200。
若是把768变化为整百的数,同样道理:768加上32变为整百的数。32约等于首数7.6的4倍多,所以另一个乘数应该减去首数6.1的四倍多,取25。所以算式变为619×768≈(619-25)(768+32)=475200。
2,当首变数的首数为3时:把首变数转化为整百的数300、400,或者转化为333。
例:352×557≈(352-19)(557+30)=333×587≈587÷3×1000≈196000
解析:乘数352变为333所变化的幅度最小,所以把352减去19变为333。19约等于首数3.5的5倍多,所以另一个乘数557需要加上5倍多的首数5.5,取30。
3,当首变数的首数为2时:把首变数转化为整百的数200、300,或者转化为250。
例:234×557≈(234+16)(557-38)=250×519≈524÷4×1000≈129750
解析:乘数234变为250所变化的幅度最小,所以把234加上16变为250。16约等于首数2.3的7倍,所以另一个乘数557需要减去7倍的首数5.5,38。
4,当首变数的首数为1时:把首变数转化为整百的数200、300,或者转化为111、125、143、167。
例:①.135×557≈(135+8)(557-31)=143×526≈526÷7×1000≈75143
解析:乘数135变为143所变化的幅度最小,所以把135加上8变为143。8略小于首数1.3的6倍,所以另一个乘数557需要减去将近6倍的首数5.5,取31。
②.172×557≈(172-5)(557+18)=167×575≈575÷6×1000≈95833
解析:乘数172变为167所变化的幅度最小,所以把172减去5变为167。5约等于首数1.7的3倍,所以另一个乘数557需要加上3倍的首数5.5,取18。
【编后语】两数相乘使用错位加减法来做计算比较简单并且误差会比较小,比较适合选项差距小的题目。使用错位加减法时,可以首先变化任意一个乘数,然后另一个乘数做相反方向相同幅度的变化即可。由于乘数变化幅度越小,计算误差越小,所以在计算时需要尽可能变化的量尽可能小些。距离哪个数近些就转化为哪个数。