上海花千坊

高三数学练习题及答案:导数及其应用

时间:2018-04-10 13:58:00   来源:无忧考网     [字体: ]
【#高三# #高三数学练习题及答案:导数及其应用#】以下是®无忧考网为大家推荐的有关高三数学练习题及答案:导数及其应用,如果觉得很不错,欢迎点评和分享~感谢你的阅读与支持!
  一、填空题

  1.当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数________.(填序号)

  ①在[x0,x1]上的平均变化率;

  ②在x0处的变化率;

  ③在x1处的变化率;

  ④以上都不对.

  2.设函数y=f(x),当自变量x由x0改变到x0+Δx时,函数的增量Δy=______________.

  3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,f(1+Δx)),则ΔyΔx=________.

  4.某物体做运动规律是s=s(t),则该物体在t到t+Δt这段时间内的平均速度是______________.

  5.如图,函数y=f(x)在A,B两点间的平均变化率是________.

  6.已知函数y=f(x)=x2+1,在x=2,Δx=0.1时,Δy的值为________.

  7.过曲线y=2x上两点(0,1),(1,2)的割线的斜率为______.

  8.若一质点M按规律s(t)=8+t2运动,则该质点在一小段时间[2,2.1]内相应的平均速度是________.

  二、解答题

  9.已知函数f(x)=x2-2x,分别计算函数在区间[-3,-1],[2,4]上的平均变化率.

  10.过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.

  能力提升

  11.

  甲、乙二人跑步路程与时间关系如右图所示,试问甲、乙二人哪一个跑得快?

  12.函数f(x)=x2+2x在[0,a]上的平均变化率是函数g(x)=2x-3在[2,3]上的平均变化率的2倍,求a的值.

  参考答案

  1.①

  2.f(x0+Δx)-f(x0)

  3.4+2Δx

  解析Δy=f(1+Δx)-f(1)=2(1+Δx)2-1-2×12+1=4Δx+2(Δx)2,

  ∴ΔyΔx=4Δx+2(Δx)2Δx=4+2Δx.

  4.s(t+Δt)-s(t)Δt

  解析由平均速度的定义可知,物体在t到t+Δt这段时间内的平均速度是其位移改变量与时间改变量的比.

  所以v=ΔsΔt=s(t+Δt)-s(t)Δt.

  5.-1

  解析ΔyΔx=f(3)-f(1)3-1=1-32=-1.

  6.0.41

  7.1

  解析由平均变化率的几何意义知k=2-11-0=1.

  8.4.1

  解析质点在区间[2,2.1]内的平均速度可由ΔsΔt求得,即v=ΔsΔt=s(2.1)-s(2)0.1=4.1.

  9.解函数f(x)在[-3,-1]上的平均变化率为:

  f(-1)-f(-3)(-1)-(-3)

  =[(-1)2-2×(-1)]-[(-3)2-2×(-3)]2=-6.

  函数f(x)在[2,4]上的平均变化率为:

  f(4)-f(2)4-2=(42-2×4)-(22-2×2)2=4.

  10.解∵Δy=f(1+Δx)-f(1)=(1+Δx)3-1

  =3Δx+3(Δx)2+(Δx)3,

  ∴割线PQ的斜率

  ΔyΔx=(Δx)3+3(Δx)2+3ΔxΔx=(Δx)2+3Δx+3.

  当Δx=0.1时,割线PQ的斜率为k,

  则k=ΔyΔx=(0.1)2+3×0.1+3=3.31.

  ∴当Δx=0.1时割线的斜率为3.31.

  11.解乙跑的快.因为在相同的时间内,甲跑的路程小于乙跑的路程,即甲的平均速度比乙的平均速度小.

  12.解函数f(x)在[0,a]上的平均变化率为

  f(a)-f(0)a-0=a2+2aa=a+2.

  函数g(x)在[2,3]上的平均变化率为

  g(3)-g(2)3-2=(2×3-3)-(2×2-3)1=2.

  ∵a+2=2×2,∴a=2.