上海花千坊

高二年级暑假数学《直线与圆锥曲线》作业填空题

时间:2016-07-29 15:27:00   来源:无忧考网     [字体: ]
填空题(每个题5分,共4小题,共20分)
1、已知椭圆 ,椭圆上有不同的两点关于直线 对称,则 的取值范围是 。
2、抛物线 被直线 截得的弦长为 ,则 。
3、已知抛物线C的顶点坐标为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若 为 的中点,则抛物线C的方程为 。
4、以下同个关于圆锥曲线的命题中
①设A、B为两个定点,k为非零常数, ,则动点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若 则动点P的轨迹为椭圆;
③方程 的两根可分别作为椭圆和双曲线的离心率;
④双曲线 有相同的焦点.
其中真命题的序号为 (写出所有真命题的序号)
(三)解答题(15、16、17题每题12分,18题14分,共50分)
5.在平面直角坐标系xOy中,经过点(0,2)且斜率为k的直线l与椭圆x22+y2=1有两个不同的交点P和Q.
(1)求k的取值范围;
(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A、B,是否存在常数k,使得向量OP→+OQ→与AB→共线?如果存在,求k值;如果不存在,请说明理由.
6.在直角坐标系xOy上取两个定点A1(-2,0),A2(2,0),再取两个动点N1(0,m),N2(0,n),且mn=3.
(1)求直线A1N1与A2N2交点的轨迹M的方程;
(2)已知点A(1,t)(t>0)是轨迹M上的定点,E,F是轨迹M上的两个动点,如果直线AE的斜率kAE与直线AF的斜率kAF满足kAE+kAF=0,试探究直线EF的斜率是否是定值?若是定值,求出这个定值,若不是,说明理由.
7.(09山东)设椭圆E: (a,b>0)过M ,N 两点,O为坐标原点,
(I)求椭圆E的方程;
(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且 ?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由
8. (11山东)在平面直角坐标系 中,已知椭圆 .如图所示,斜率为 且不过原点的直线 交椭圆 于 , 两点,线段 的中点为 ,射线 交椭圆 于点 ,交直线 于点 .
(Ⅰ)求 的最小值;
(Ⅱ)若 ∙ ,
(i)求证:直线 过定点;(ii)试问点 , 能否关于 轴对称?若能,求出此时 的外接圆方程;若不能,请说明理由.