1.小学四年级举一反三奥数题 篇一
有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。一箱苹果多少个?【思路导航】(1)1箱苹果+1箱梨+1箱橘子=42×3=136(个);
(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个)由(1)(2)两个等式可知:
1箱苹果比1箱桃多126-108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个)。
1箱苹果和1箱桃共有多少个:37×2=74(个)
1箱苹果比1箱桃多多少个:42×3-36=18(个)
1箱苹果有多少个:28+18=46(个)
2.小学四年级举一反三奥数题 篇二
A、B两地之间是山路,相距60千米,其中一部分是上坡路,其余是下坡路,某人骑电动车从A地到B地,再沿原路返回,去时用了4.5小时,返回时用了3.5小时。已知下坡路每小时行20千米,那么上坡路每小时行多少千米?【解析】由题意知,去的上坡时间+去的下坡时间=4.5小时
回的上坡时间+回的下坡时间=3.5小时
则:来回的上坡时间+来回的下坡时间=8小时
所以来回的下坡时间=60÷20=3(小时)
则:来回的上坡时间=8-3=5(小时)
故:上坡速度为60÷5=12(千米/时)
3.小学四年级举一反三奥数题 篇三
有一个长方体木块,长125厘米,宽40厘米,高25厘米。把它锯成若干个体积相等的小正方体,然后再把这些小正方体拼成一个大正方体。这个大正体的表面积是多少平方厘米?分析与解一般说来,要求正方体的表面积,一定要知道正方体的棱长。题中已知长方体的长、宽、高,同正方体的棱长又没有直接联系,这样就给解答带来了困难。我们应该从整体出发去思考这个问题。
按题意,这个长方体木块锯成若干个体积相等的小正方体后,又拼成一个大正方体。这个大正方体的体积和原来长方体的体积是相等的。已知长方体的长、宽、高,就可以求出长方体的体积,这就是拼成的大正方体的体积。进而可以求出正方体的棱长,从而可以求出正方体的表面积了。
长方体的体积是
125×40×25=125000(立方厘米)
将125000分解质因数:
125000=2×2×2×5×5×5×5×5×5
=(2×5×5)×(2×5×5)×(2×5×5)
可见大正方体的棱长是
2×5×5=50(厘米)
大正方体的表面积是
50×50×6=15000(平方厘米)
答:这个大正方体的表面积是15000平方厘米。
4.小学四年级举一反三奥数题 篇四
桌上有9只杯子,全部口朝上,每次将其中6只同时翻转。请说明:无论经过多少次这样的翻转,都不能使9只杯子全部口朝下。 解答:要使一只杯子口朝下,必须经过奇数次翻转。要使9只杯子口全朝下,必须经过9个奇数之和次翻转。即翻转的总次数为奇数。但是,按规定每次翻转6只杯子,无论经过多少次翻转,翻转的总次数只能是偶数次。因此无论经过多少次翻转,都不能使9只杯子全部口朝下。被除数=2140+16=856。答:被除数是856,除数是21。
5.小学四年级举一反三奥数题 篇五
李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛。事先规定。兄妹二人不许搭伴。第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹。请你判断,小华、小红和小林各是谁的妹妹。 解答:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。第一种可能是:李明的妹妹是小红,王宁的妹妹是小林;第二种可能是:李明的妹妹是小林,王宁的妹妹是小红。对于第一种可能,第二盘比赛是张虎和小林对李明和王宁的妹妹。王宁的妹妹是小林,这样就是张虎、李明和小林三人打混合双打,不符合实际,所以第一种可能是不成立的,只有第二种可能是合理的。所以判断结果是:张虎的妹妹是小华;李明的妹妹是小林;王宁的妹妹是小红。
6.小学四年级举一反三奥数题 篇六
有A、B两码头间河流长为200千米,甲、乙两船分别从A、B码头同时启航。如果相向而行5小时相遇,如果同向而行甲船55小时追上乙船。求两船在静水中的速度【分析】两船相向而行,两船速度和=甲在静水中的速度+水速+乙在静水中的速度-水速=甲在静水中的速度+乙在静水中的速度
两船同向而行,两船速度差=(甲在静水中的速度+水速)-(乙在静水中的速度+水速)=甲在静水中的速度-乙在静水中的速度
根据距离=速度*时间,可计算求出两船在静水中的速度
【解】甲在静水中的速度+乙在静水中的速度=220÷5=44(千米/小时)
甲在静水中的速度-乙在静水中的速度=220÷55=4(千米/小时)
甲在静水中的速度=(44+4)÷2=24(千米/小时)
乙在静水中的速度=(44-4)÷2=20(千米/小时)
7.小学四年级举一反三奥数题 篇七
晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14个。晶晶摆这个方阵共用围棋子多少个?答案答案:
方阵每向里面一层,每边的个数就减少2个。知道最外面一层每边放14个,就可以求第二层及第三层每边个数。知道各层每边的个数,就可以求出各层总数。
解:最外边一层棋子个数:(14-1)×4=52(个)
第二层棋子个数:(14-2-1)×4=44(个)
第三层棋子个数:(14-2×2-1)×4=36(个)。
摆这个方阵共用棋子:52+44+36=132(个)
还可以这样想:中空方阵总个数=(每边个数一层数)×层数×4进行计算。
解:(14-3)×3×4=132(个)
答:摆这个方阵共需132个围棋子。
8.小学四年级举一反三奥数题 篇八
妈妈去商店给小红买了一支铅笔、2块橡皮、2个练习本,付了1元钱,售货员找给她5分钱。妈妈看了看1支铅笔的价钱是8分,就说:先生,您把账算错啦。小朋友你们动脑想一想,妈妈为什么这么快就知道账算错了? 解答:利用数的奇偶性判断,不用计算就可知道这笔账算错了。因为1支铅笔的价钱8分是个偶数,另外,不论橡皮和练习本的价钱是多少,2块橡皮,以及2个练习本的钱也都是偶数,所以妈妈应付的总钱数应当是个偶数,他付了1元即100分,售货员找回的钱数也应是个偶数。但售货员实际找给他的5分是个奇数,所以妈妈说售货员把这笔账算错了,可见妈妈并不需要计算,只是根据奇偶性进行判断,就知道这笔账算错了。
9.小学四年级举一反三奥数题 篇九
有三朵红头花和两朵蓝头花。将五朵花中的三朵花分别戴在A、B、C三个女孩的头上。这三个女孩中,每个人都只能看见其他两个女孩子头上所戴的头花,但看不见自己头上的花朵,并且也不知道剩余的两朵头花的颜色。问A:你戴的是什么颜色的头花?
A说:不知道。
问B:你戴的是什么颜色的头花?
B想过一会之后,也说:不知道。
最后问C,C回答说:我知道我戴的头花是什么颜色了。
当然,C是在听了A、B的回答之后而作出推断的。试问:C戴的是什么颜色的头花?
参考答案:
答案是红色
A看到一红一蓝,回答不知道。
B通过A的回答,猜测A看到2红或一红一蓝。如果B看到C戴蓝色的头花,代表A看到一红一蓝,B就能推断出自己戴红色的头花;如果B看到C戴红头花,B就不能推断自己戴什么色彩的头花,也就是说B回答不知道,代表B看到C戴红色的头花,所以C就知道自己戴红头花。
10.小学四年级举一反三奥数题 篇十
甲、乙、丙三人用擂台赛形式进行乒乓球训练,每局2人进行比赛,另1人当裁判。每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战。半天训练结束时,发现甲共打了15局,乙共打了21局,而丙共当裁判5局。那么整个训练中的第3局当裁判的是_______。答案:
本题是一道逻辑推理要求较高的试题。首先应该确定比赛是在甲乙、乙丙、甲丙之间进行的。那么可以根据题目中三人打的总局数求出甲乙、乙丙、甲丙之间的比赛进行的局数。
(1)丙当了5局裁判,则甲乙进行了5局;
(2)甲一共打了15局,则甲丙之间进行了15-5=10局;
(3)乙一共打了21局,则乙丙之间进行了21-5=16局;
所以一共打的比赛是5+10+6=31局。